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Abstract:
Experimental design (Box, G. E. P.; Hunter, W. G.; Hunter, J.
S. Statistics for Experimenters; Wiley: New York, 1978 and
Carlson, R. Design and Optimisation in Organic Synthesis;
Elsevier: Amsterdam, 1992) is an established and proven
methodology for product and process improvement in the
pharmaceutical industry. This paper presents a step-by-step
approach to optimisation of a synthetic transformation using a
central composite experimental design, in conjunction with
automated on-line HPLC. Highly predictive models for the
reaction were obtained using a commercially available software
package. [There are many commercially available DOE pack-
ages. The software package we used was Design-Expert 5 (DX-
5) (http://www.statease.com).] These mathematical models were
interrogated to examine the effect on yield and quality under a
variety of reaction conditions or constraints. The synergy of
experimental design and automation is also discussed.

Introduction
For the development chemist, the optimisation of a

synthetic transformation is a key deliverable in the process
of developing a chemical reaction. The resulting process must
be a robust procedure capable of operating routinely in a
manufacturing environment. In this paper, we describe a
stepwise procedure (summarised in Table 1) which aims to
guide the chemist through the appropriate decision processes
to allow a reaction to be progressed from the milligram scale
to pilot or production scales. The chemist will be familiar
with this decision pathway, but the principle objective of
the guide is to

(a) highlight the advantages offered by applying experi-
mental design to the chemist’s strategy

(b) show how the information collected offers additional
reaction and process modelling opportunities.

In the subsequent sections of this paper, each step is
explained and a case study is used to more fully illustrate
the ideas and approach. The case study presented describes
our optimisation of the desilylation of a silyl ether1 to give
the corresponding alcohol2, a key step in the synthesis of a
trinem antibiotic4 (Figure 1).

Appendices 1, 2 are provided to give a glossary of the
terminology used in experimental design and some additional
comments on the statistical analysis employed.

Step 1: Choose the Synthetic Methodology for
Optimisation

The first step is to decide whether to screen alternative
chemistries or to optimise the current procedure. This is the
most important decision point for the development of the
synthetic transformation, irrespective of whether the strategy
that follows is a traditional or an experimental design
approach.

It is important to realise that any major limitations of your
current procedure are unlikely to be significantly improved
by experimental design alone. Experimental design is not a
substitute for creative chemistry. However, if the only
synthetic transformation available was flawed, then experi-
mental design would have its role to play in obtaining the
best from it.

After selecting the preferred chemical transformation (e.g.,
silyl deprotection) it is then recommended to apply screening
design as early as possible, to identify the correct choice of
discrete variables (e.g. solvent, reagent, and ligand). This is
outside the scope of this paper and will be the subject of a
future publication.

Case Study
Our original conditions involved deprotecting the silyl

ether1 using excess tetrabutylammonium bromide (TBAB),
potassium fluoride (KF), and acetic acid. In the laboratory,
these conditions gave us a yield of 75% of the alcohol2
after product isolation. The yield dropped to ca. 68% when
operating on up to a 1000-L scale in pilot plant. This drop
in efficiency was attributed to the instability of the product
during the protracted work up that was required to remove
the acetic acid. An additional concern of the work up was
that a considerable amount of waste was generated (150 kg
of waste/kg of product) including quaternary amine by-
products (5 kg/kg of product). These issues presented us with
major long-term waste disposal problems as routine manu-
facture was expected to be several tens of tonnes per annum.
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Figure 1. Case study reaction scheme.
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A program of work to optimise this transformation was
initiated, commencing with a traditional laboratory-scale
screen of alternative desilylation procedures. This identified
triethylamine trihydrogen fluoride (TREAT.HF)5 in N-
methylpyrrolidone (NMP) as the most promising reagent/
solvent to achieve the desired conversion. The other proce-
dures screened relied on harsh conditions which, when
applied to this particular substrate, resulted in significant or
complete degradation.

A larger-scale scoping study showed that the potential
advantages offered by this new methodology were:

(a) the alcohol 2 was isolated initially in ca. 80% yield.
(b) because acetic acid was not used, it was not necessary

to carry out extensive extractions. This reduced the waste
generated by 60%.

(c) the amount of amine by-products were also signifi-
cantly reduced (by 85%).

However, under the new reaction conditions, a new
impurity, the lactone3 (Figure 2), gradually forms which
was found to be difficult to remove using the simpler
isolation conditions.

The amount of impurity that forms was critically depend-
ent on the reaction time. If the reaction is stopped too early
the conversion is incomplete. Conversely, if the reaction is
stopped too late, the level of impurity becomes unacceptable
(see Figure 3 for reaction profile).

Outcome from Step 1.The use of TREAT.HF in NMP
offered significant process improvements. However, we need
to identify reaction conditions that give an optimal yield
whilst ensuring that the generation of lactone3 is minimized.

Step 2: Define the Targets and Goals for the
Optimisation Study

Before embarking on the study, define your project targets
and goals by looking at the typical Process Research concerns

(5) Franz, R.J. Fluorine Chem. 1980, 15, 423; McClinton, M. A.Aldrichimica
Acta 1995,28(2), 31.

Table 1: Stepwise guide to the optimisation of synthetic reactions

step aim desired outcome

1 choose the synthetic methodology for optimisation a decision that the chemical transformation is carried out using a defined
reagent(s) and solvent(s)

2 define the targets and goals for the optimisation study a defined success criteria for the study

3 choose the strategic approach (traditional or
experimental design)

a firm strategy that will provide the information/data that is required to
meet project goals

4 select the critical factors for the procedure
(e.g. temperature, concentration etc)

the list of the critical factors is identified

5 define the factor ranges (e.g. reaction
time to be studied between 5 and 10 h)

the list of the upper and lower values for each of the critical factors
is identified

6 define the scope of the study a decision to study the whole process or to examine the reaction and
work-up separately

7 choose the key responses to be measured
(e.g., yield, quality etc)

response measurements are chosen that are meaningful and will
indicate progress to the study’s goal

8 choose the most appropriate experimental design the adoption of a design strategy and plan of the experiments

9 consider the practical aspects of implementing
experimental design

good reproducibility for measuring the responses (e.g. yield, particle size)
to ensure the results are not confounded by experimental error process
control of factor to be studied such as rate of addition, temperatures, etc.
good control of the variables that are to be held constant

10 implement the design the execution of experiments according to the design and an accurate
record of the corresponding responses

11 consider the statistical implications to the practical
implementation

an understanding of any errors or bias incurred whilst implementing
the design

12 analyse the results an insight into the statistical characteristics of the mathematical models
(e.g. variability, lack of fit)

13 interpret and interrogate the model an understanding and thereby control of the process under study.
Identification of the important factors and any interaction effects.
Identification of the optimal settings to carry out the experiment.

14 verify the mathematical model a reality check of the predicted outcome of the mathematical model
with that obtained experimentally

15 model the Process Deviation Ranges an understanding of the robustness of the process

16 scale up the procedure. an assessment of how the mathematical model generated on a laboratory
scale, applies to experimental data generated on a larger scale

Figure 2. Undesired side-product.
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(e.g. yield, throughput, cost of goods, environmental impact).
It is also important to check that an optimisation study is
appropriate at the current stage of the project life cycle. For
example, if little is known about the reaction, it may be
appropriate to carry out a scoping or a screening study before
an optimisation study is attempted. Conversely, if the project
goal has already been met, a robustness study would be more
suitable. This aspect is covered in greater detail in step 8,
Table 4.

Case Study
Outcome from Step 2.The goal for the case study was

set as the optimisation of the TREAT.HF procedure using
conditions consistent with a viable production procedure
operating at tens of tonnes per annum.

The specific targets are quantified in Table 2.

Step 3: Choose the Strategic Approach (Traditional or
Experimental Design)

Here, judgment is again crucial as to meeting the goals
for the study. The requirement is to balance the type of
information to be gained and the amount of resource
available. At first glance, the designed approach may appear
to require more resources than the traditional approach,
because the plan of the experiments is carried out “up-front”.
However, the key issues for you to resolve are:

(a) What is the risk that you will not obtain the quality
of data you require to solve the problem by the traditional
approach?

(b) How long will it take?
With experimental design, the difference is that, you will

obtain the information (good or bad news) to make your
decisions and that the resources and the time scales required
can be defined at the outset of the study. Experimental design
also allows for additional efficiencies as the reactions can
be carried out in parallel.

A Comparison of a Traditional versus an Experimen-
tal Design Approach.The traditional approach assesses the
effect of one particular factor by keeping all other conditions
constant. Then this factor is held at its optimum setting, a
different factor is examined, and so on. It is very difficult to
apply the approach efficiently to obtain an overall picture
of the reaction, as Figure 4 suggests. The result is that an
incomplete picture is obtained that completely misses any
synergistic effects between the factors. In addition, it
contributes little to our understanding of robustness of the
process.

In contrast, an approach based on experimental design
(e.g., Figure 5, a central composite design) offers a more

Figure 3. Time profile of reaction.

Table 2: Case study goals

effect on process target/constraint

efficiency maximize the yield of the alcohol2
(target> 75%th)

product quality the level of the by-product (lactone3)
in the isolated product to be<0.5%.

cost of goods minimize on the use of the TREAT.HF
reagent maximize the throughput of the
reaction by maximizing concentration
and minimizing the reaction time.

Figure 4. Diagram of a traditional approach. This shows how
the traditional “one-factor-at-a-time approach” is applied to
the study of three factors (e.g.,X ) time, Y ) concentration,
Z ) equivalents of reagent). The diagram illustrates that
maintaining two factors constant, whilst varying the third allows
the experimenter to obtain only a partial exploration of the
overall reaction space.

Figure 5. Diagram of an experimental design approach. This
shows a central composite design for three factors. There are
8 cube points, 6 star points, and 1 centre point, totalling 15
different reaction conditions. The centre point is repeated
several times to obtain an estimate of background noise.
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systematic approach examining all factors, at several levels
over the full range of the “reaction space” you have chosen.
Importantly, the data collected from this design also allows
the generation of a mathematical model (response surface
model) of the chemical process based on the statistical
analysis of this set designed experiments. This model then
allows the user to analyse the interactions between the factors
and hence offers the opportunity to achieve better under-
standing and control. This model can then be used to identify
option and opportunities to optimise and balance conflicting
processing constraints (e.g., economic, quality, and environ-
mental).

Case Study
Outcome from Step 3.To learn more about the interac-

tive effects of the factors and resolve conflicting requirements
of yield and quality in an efficient manner, a decision was
made to adopt an experimental design approach.

Step 4: Select the Critical Factors for the Procedure
(Temperature, Concentration, etc.)

In this step it is necessary to predict what are the probable
critical factors effecting your process and their relative
importance. This is best achieved by carry out a brainstorm-
ing exercise, based on the existing level of knowledge.

If a critical factor is not included in the list of potential
factors for investigation then diagnostic tools of experimental
design (e.g. lack of fit tests and residual analysis) will allow
the presence of a hidden variable to be detected.

Case Study
Outcome from Step 4.In the case study, the following

four factors were considered to significantly impact yield
and quality of the alcohol 2:

(a) equivalents of the TREAT.HF reagent
(b) temperature
(c) reaction time
(d) concentration (volumes of NMP)
Just as important, there were many factors that were held

constant:
(e) process control factors: order and rate of addition,

rate of stirring, nitrogen blanketing
(f) batches of the substrate, reagent, and solvent
(g) response measurement: the HPLC method was kept

constant for all the experiments
(h) the chemist carrying out the experiments

Step 5: Define the Factor Ranges
For each critical factor, choose a range of settings to be

studied, based on both chemical knowledge and intuition.
Observations from limited scoping studies and pragmatism
(e.g. practical considerations in scale-up) are also valuable
in setting meaningful ranges.

Note that if the factor ranges chosen are too small, there
is the danger that the optimum conditions will lie outside
the area of study. Conversely if the factor ranges are too
large, the model will not fit the data as well, and therefore
will be less predictive.

Case Study
Outcome from Step 5. The following ranges for the

factors, listed in Table 3, were chosen to deliver a procedure
that would meet our success criteria outlined in Step 2 (Table
3).

Step 6: Define the Scope of the Study (Optimise the
Reaction Conditions or Isolation or Both)

The optimisation of a synthetic transformation typically
involves the development chemist in two principle areas of
concern:

(a) the control of the reaction to maximize unisolated yield
and minimize side-reactions

(b) maximizing the benefits of the work-up procedure by
taking advantage of any opportunities to remove unwanted
by-products, whilst minimizing the losses of the product on
isolation

Experimental design offers the opportunity to look at the
whole process or at issues (a) and (b) separately.

When it is early in the product’s lifecycle, we recommend
carrying out a study to establish the best reaction conditions
based on the assumption that the purer the process stream,
the easier the work-up. Sometimes work-up and reaction are
inextricably linked in which case the study needs to cover
both work-up and reaction. Consequently, the design will
inevitably contain more variables to control and more time-
consuming to implement. However, it is good practice then
to look at both the work-up and reaction in the verification
experiments (experiments that verify the validity of the
model).

Case Study
Outcome from Step 6.The scope for the case study was

limited to the optimisation of the reaction conditions. This
decision reflects that the target for the subsequent isolation
stage was to produce alcohol2 with levels of the lactone
impurity 3 at less than 0.5%. The initial pilot experiments
showed that the key to achieve this was that the levels of
the lactone3 in the crude reaction mixture should be less
than 2% (HPLC %area/area). This was because the lactone
3 co-crystallizes with the alcohol2.

Levels of the starting material1 were not critical as it
was readily removed during the purification steps.

Step 7: Choose the Key Responses to Be Measured
(e.g., Yield, Quality, etc.)

The next important step is to establish the response
measurements that will signify progress toward the goals or
targets identified in step 2.

A key issue is also that the response measurements (e.g.
yield, impurity level) are robust and meaningful. As with

Table 3: Factors studied

factor range units factor

temperature 10 30 °C
time 19 31 hours
concentration (amount of NMP solvent) 3 7 volumes
equiv of Et3N‚3HF reagent 1 1.67 equivalents
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all scientific studies, systematic errors (bias in the estimation
of the response) and random errors (low precision of
measurement or background noise) will present significant
issues in the interpretation of the experimental results.

Case Study
Outcome from Step 7.The following responses were

chosen to meet the objectives for the case study:
(a) yield as determined by HPLC analysis (% area/area)
(b) quality of the unisolated product2 as determined by

the peak % area/area of impurities as measured by HPLC.
Specifically, the levels of residual silyl ether1 and lactone
3 formation were recorded.

Step 8: Choosing the Most Appropriate Experimental
Design

Check that your intended study is “fit for purpose” for
the current point in the product’s life cycle by using Table
4. If resources are limited, consider using a stepwise approach
to applying the experimental design, that is, (a) pilot study,
(b) screening design, (c) optimisation design, (d) robustness
design. It is often possible to augment the data obtained from
the initial screening design with additional data points to
produce the optimisation study.

Case Study
Outcome from Step 8.For the case study, the agreed

aim was to carry out a four-factor central composite design
using 30 data-points. This allows us the opportunity to
identify the optimised procedure for this transformation,
working within the processing restraints agreed in step 2.

The experimental plan used is outlined in Table 5. As
this is a four-factor design, there are 25 experimental data
points. The centre point is replicated 5 times to estimate the
level of experimental error, making a total of 30 data-points
to be collected. In practice only 20 experiments were carried
out as some experiments were sampled more than once at
different time-points (see step 10 for further discussion of
the implications of doing this).

Sufficient resource was available to go straight into the
response surface design. It was expected that curvature would
be seen in the response function over the region of interest.
Therefore, a response surface design would be more ap-
propriate than a screening design.

If resource were tighter, a more cautious approach would
be to first carry out a fractional factorial study involving as
few as 8 data-points. If the results from this were encourag-
ing, the design could be augmented with an additional
22 data-points to convert it into the optimisation study
(Table 5).

Note; it will be seen that although the case study deals
with optimisation, additional information about the relative
importance of the factors and robustness is also gained. Thus,
Table 4 should be seen as a general, rather than an absolute,
indicator of the information that can be derived from each
stage.

Step 9: Consider the Practical Aspects of Implementing
the Experimental Design

The key issues of process control to consider are those
you would typically consider for good experimentation

Table 4: Stepwise approach to design selection

what is your goal? suggested design rationale

To check that the extreme combinations of
factor levels will work and gain an insight
into the repeatability of the system.

Pilot study (sizing or scoping
experiments).

1. One experiment carried out at
all the high factor settings

2. One experiment carried out at
all the low factor settings

3. Two experiments carried out at
the centre points.

This small experimental set performed before
consuming larger resources on the chosen
design. It should provide confidence that
the proposed factor ranges and the response
measurement method are appropriate. The
centre-points will give an insight into the
reproducibility of the transformation and
the analysis system.

To identify the relative impact each of the
factors has on the process. Typical
continuous factors would be time,
concentration, reagent equivalent,
temperature, rate of stirring, rate of
addition and pH. Typical discrete factors
would be supplier of starting material,
solvent A or solvent B.

fractional factorial screening design
D-optimal designs

If very little is known about the process apply
screening designs to reduce the number of
factors to a manageable number in a subsequent
optimisation study. If there are any discrete
factors in your design, the decision to choose
between options must be resolved before a
subsequent optimisation study.

To optimise the process (e.g. identify the
maximum yield, maximum throughput,
or the minimization of an impurity)

Central composite Apply response surface designs to optimise the
key continuous factors against your defined
goal(s).

To obtain a robust procedure once a process
is identified. To establish allowable
variations in the process operating
conditions that will not impact on the
yield and quality of your product

Fractional Factorial
Plackett-Burman

If a more accurate assessment of robustness is
required than that provided by the optimisation
study it may be necessary to fine-tune (studying
narrower factor ranges) in the area of interest. It
may also be appropriate to reintroduce the
apparently ‘trivial’ or less significant factors
from the screening design. This will check
whether the process deviation ranges for these
factors are also valid.
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whether by the traditional or the experimental design
approach.

Case Study
Outcome from Step 9.Prior to this case study, control

of two of the factors, temperature and time were identified
as being particularly problematic over the factor ranges
chosen. The issues were successfully overcome by introduc-
ing new technology to obtain better control.

Temperature. Commonly used small-scale laboratory
equipment such as electrical heaters, oil-baths and cooling
baths did not give the precision or the range of temperatures
that was required. In the initial scoping studies, the reaction
was carried out at “ambient” temperature but with the
variations in the room temperature from the day and night,
process control was poor. By employing a commercially
available Peltier block,6 we had convenient and accurate
temperature control. Several reactions at the same temper-
ature could be carried out in the block at the same time.
The temperature range of 0 to 40°C, although limited for
routine chemistries, was ideal for the desilylation reaction
under study.

Time. One of the factors in the study was the time to
achieve reaction conversion. It was possible manually to

monitor the reaction progressing during the day by HPLC,
but not during the night, as there was the safety consideration
of handling hydrogen fluoride solutions outside normal
working hours.

To overcome this, the reaction was monitored automati-
cally by HPLC, using a standard Gilson 231XL6 auto-sampler
that was capable of analytical sample preparation and
injection. The reactions specified by the experimental design
model were prepared by hand. Aliquots of reactions were
placed in the Peltier block sample tray of the autosampler,
the position and software control determining the time-point
at which the reaction was automatically monitored. There-
fore, using this semi-automated approach, the required data-
points were obtained.

Step 10: Implement the Design
Carry out the reactions with care, according to well-

defined worksheets of the design plan. Avoid transcription
errors whilst entering the associated responses.

Case Study
Outcome from Step 10.The reactions were carried out

using the following procedure:
The silyl ether1 (2 g) was dissolved inN-methylpyrroli-

done (NMP, range 4-7 volumes [8-14 mL]) and then
treated with triethylamine trihydrogen fluoride (TREAT.HF,
1-1.67 equiv [0.6-1.0 g]). The mixture was sonicated for
1 min to give a homogeneous solution. An aliquot (0.5 mL)
was placed in a 2 mL vial in the Peltier autosampler rack
(temperature range 10-30°C) and sampled at the appropriate
time-points.

Safety Note.Triethylamine trihydrogen fluoride is as-
sumed to be of the same order of toxicity as a solution of
hydrogen fluoride, that is, very toxic due to its extremely
corrosive and irritant nature. Hydrogen fluoride was detected
(13 ppm at 3 cm above the liquid surface) in the confined
headspace of the reagent bottle. Therefore, the same precau-
tions were taken as would have been for dealing with
hydrogen fluoride (either in solution or gaseous). Unlike
hydrogen fluoride, however, triethylamine trihydrogen fluo-
ride does not etch glass. For further details, see the Materials
Safety Data Sheet as supplied by FAR Research.7

Step 11: Consider the Statistical Implications of the
Practical Implementation

Examine the experimental procedure for practices that
may introduce error and bias into the study. An important
requirement of experimental design is that, where possible,
the reactions should be carried out in a random order. If there
are any systematic errors (such a gradually degrading HPLC
column), then this will be revealed during the analysis. If
the experiments are not carried out in random order, it may
be possible to confuse factor effects with systematic error.
Inspection of the replicated control experiments will also
reveal random error or noise due to unassignable causes, as
these cannot be as a result of changes in the factors.

(6) The Gilson 231XL and the Peltier block are commercially available from
Anachem Ltd, Charles Street, Luton, Beds, LU2 OEB UK.

(7) Far Research Inc., 307 Amherst Road, PO Box 2278, Morganton, NC 28680,
U.S.A., Telephone: 704 438 0101.

Table 5: Experimental plana

factor settings responses

standard
order

run
order

temp
°C

time
h

NMP
vol

TREAT.HF
equiv

alcohol
% area

silyl ether
% area

lactone
% area

1 4 15 22 4 1.17
2 14 25 22 4 1.17
3 8 15 28 4 1.17
4 18 25 28 4 1.17
5 3 15 22 6 1.17
6 13 25 22 6 1.17
7 7 15 28 6 1.17
8 17 25 28 6 1.17
9 2 15 22 4 1.5

10 12 25 22 4 1.5
11 6 15 28 4 1.5
12 16 25 28 4 1.5
13 1 15 22 6 1.5
14 15 25 22 6 1.5
15 5 15 28 6 1.5
16 19 25 28 6 1.5
17 20 10 25 5 1.33
18 30 30 25 5 1.33
19 9 20 19 5 1.33
20 11 20 31 5 1.33
21 26 20 25 3 1.33
22 24 20 25 7 1.33
23 22 20 25 5 1
24 28 20 25 5 1.67

control experiments (centre points)

25 10 20 25 5 1.33
26 21 20 25 5 1.33
27 23 20 25 5 1.33
28 25 20 25 5 1.33
29 27 20 25 5 1.33
30 29 20 25 5 1.33

a Note that the table lists the experiments in standard order (a conventional
ordering of the array of low- and high-factor levels versus runs), but they were
actually carried out in the run order
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Case Study
Outcome from Step 11.In this case study, there were

two aspects of note- randomisation and repeated measures.
The experiments were not carried out in a completely random
order for two reasons. The first reason is that the temperature
of the Peltier reaction block is uniform throughout. This
meant that any reactions carried out in parallel had to be at
the same temperature. For example, all the reactions at 15
°C were carried out on 1 day, and all the reactions at 25°C
were carried out on the next day. To carry out the reactions
in random order using the available equipment would have
meant that the reactions would have had to be carried out
serially and hence the study would take longer to complete.
The second reason was that where two design points had
the same settings of temperature, solvent volume and
equivalents of reagent, but differed in time, the same reaction
was used and the response measured at the two time points.
Clearly, this approach does not lend itself to randomisation,
as the shortest time point always has to be measured first!
In addition, it underestimates the experimental error in
preparing the reaction over the whole study. Repeated
sampling may also introduce a systematic error between the
samplings- this would be the case if the mixture was not
heterogeneous and sampling successively depleted the con-
centration of the supernatant. As a general point, sampling
of a heterogeneous mixture, whether by an automated or a
manual approach, should always be carried out with caution
and awareness of the implications of the validity of the data.

Step 12: Analyse the Results
First, input the responses into the design table. Fit a full

model by multiple linear regression and examine model terms
for significance. Then modify the model, if necessary, to
improve prediction by pooling nonsignificant model terms
into error. ANOVA tables andp-values are useful for
determining which terms can be removed from the model.
The final model should maintain a hierarchical structure.
Check the final model by examining studentised residuals
and diagnostic plots. Finally generate contour and 3D plots
to determine the region where predicted optimum process
outcome occurs. Use the predicted model and confidence
intervals to narrow the settings of the factors.

Case Study
Outcome from Step 12.The results are summarised in

Table 6. The analysis is performed in Design-Expert 5
(DX-5).

Figure 6 shows the correlation between the experimental
and the predicted data-points for the alcohol response. The
data are arranged in standard order, not run order. The last
six entries are the controls, which indicate the level of
background noise is relatively small, compared to the
variation in experimental data-points.

Similarly, Figures 7 and 8 show the same information
for the silyl ether and the lactone responses. All three models
show that the predicted responses generally lie within 0.5%
or less of the experimental data. See the appendix 2 for more
details of the statistical analysis.

Step 13: Interpret and Interrogate the Model

Examine the perturbation graph to see the effect of
changing one factor while holding the rest constant. This
plot can be useful to decide which axes to use on a contour
or 3D plot. Pick the factors that have the most complex
behaviour (most curved or steepest change rate) and use them
as axes on the other plots. This will put the simplest (least
interesting) dimensions off the graph. The contour plots show
the interaction effects and the degree of robustness (the flatter
the surface, the less susceptible the response is to changes
in process conditions).

Case Study

Outcome from Step 13.Figure 9 shows that of the four
factors, temperature has the most significant effect on all
three responses (i.e. has the steepest change rate).

Although the model is in four dimensions, it is only
possible to display two factors at once using the software.
Figure 10 shows the contour maps for each of the responses
for the two most interesting factors; time and temperature.
The other two factor levels are held constant. The contours
represent the level of the responses. Using these three plots
in turn, it is possible to see that the conditions required to
maximize the alcohol, to minimize the silyl ether and to
minimize the lactone are in three different locations- i.e.,

Table 6: Experimental resultsa.

factor settings responses

standard
order

run
order

temp
°C

time
h

NMP
vol

TREAT.HF
equiv

alcohol
% area

silyl ether
% area

lactone
% area

1 4 15 22 4 1.17 82.93 15.53 0.59
2 14 25 22 4 1.17 94.04 1.61 3
3 8 15 28 4 1.17 88.07 10.19 0.97
4 18 25 28 4 1.17 93.97 0.55 4.12
5 3 15 22 6 1.17 77.21 21.43 0.34
6 13 25 22 6 1.17 92.99 3.94 1.86
7 7 15 28 6 1.17 83.6 15.07 0.55
8 17 25 28 6 1.17 94.38 1.76 2.61
9 2 15 22 4 1.5 88.68 9.25 0.81

10 12 25 22 4 1.5 94.3 0.67 3.69
11 6 15 28 4 1.5 93 4.6 1.41
12 16 25 28 4 1.5 93.42 0 5.06
13 1 15 22 6 1.5 84.86 13.5 0.53
14 15 25 22 6 1.5 94.26 1.85 2.39
15 5 15 28 6 1.5 88.71 9.63 0.76
16 19 25 28 6 1.5 94.66 0.64 3.33
17 20 10 25 5 1.33 75.82 22.85 0.21
18 30 30 25 5 1.33 93.25 0 5.29
19 9 20 19 5 1.33 89.78 8.02 1.05
20 11 20 31 5 1.33 94.61 1.82 2.41
21 26 20 25 3 1.33 94.13 1.71 2.95
22 24 20 25 7 1.33 89.94 8.03 0.97
23 22 20 25 5 1 88.21 9.76 1.13
24 28 20 25 5 1.67 93.11 4.26 1.64

control experiments (centre points)

25 10 20 25 5 1.33 93.32 3.83 1.77
26 21 20 25 5 1.33 92.32 5.13 1.54
27 23 20 25 5 1.33 93.68 3.58 1.72
28 25 20 25 5 1.33 93.27 4.19 1.62
29 27 20 25 5 1.33 92.87 4.42 1.65
30 29 20 25 5 1.33 92.96 4.45 1.65

a Note that the table lists the experiments in standard order (a conventional
ordering of the array of low- and high-factor levels versus runs), but they were
actually carried out in the run order.
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have different preferred operating regions. Figure 11 shows
how this conflict is resolved. If the requirements are
superimposed on each other (i.e. maximize the yield, keep
the lactone level<2%, no restriction on the silyl ether), then
the permissible working area is reduced to the nonshaded
portion (in Figure 11).

Step 14: Verify the Mathematical Model
Now use the software package to interrogate the response

models on all the factors studied. The goals can be refined
to achieve alternative specified goals, such as increasing the
throughput or modifying the acceptable quality specification.
Carry out experiments using the predicted settings to confirm
the validity of the model.

Case Study
Outcome from Step 14.The reaction modelling was

highly predictive. The mathematical models were inter-
rogated to examine the effect on yield and quality under a
variety of conditions or constraints. In total, six different
scenarios were evaluated (see Table 7, column 1). In each
case, the model suggested the factor settings required to
obtain such an outcome (column 2). The first three rows

Figure 6. Comparison of actual versus predicted yield (HPLC
area/area %) for the alcohol (2).

Figure 7. Comparison of actual versus predicted composition
(HPLC area/area %) for the silyl ether (1).

Figure 8. Comparison of actual versus predicted composition
(HPLC area/area %) for the lactone (3).

Figure 9. Perturbation plots.
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show the conditions required to maximize quality within
different quality constraints. The last three rows hold the
quality constant and looks at altering the conditions to
maximize the yield, whilst constraining factors with eco-
nomic and environmental implications. When these six
different processes were performed experimentally, the actual
yield and predicted yields showed a high degree of correla-
tion (on average accurate within 0.2% area/area by HPLC)
(columns 3-6).

The analysis can also tell us the standard error and
confidence intervals associated with each of the predictions.
This helps us quantify the variability in the predicted
response (see Appendix 2, Table 15 for further details).

Step 15: Model the Process Deviation Ranges
After identifying the manufacturing conditions, use the

model to set process deviation ranges (PDRs). The process

should be capable of operating within these process limits
and still be able to deliver acceptable yield and quality of
product.

Case Study
Outcome from Step 15.This is illustrated in Table 8. If

the worst case scenarios are acceptable, then the PDRs can
be extended to give more flexibility in manufacture. If the
worst case scenarios are not acceptable, then the PDRs may
be narrowed. Alternatively, the operating conditions could
be moved to a more robust area, which may involve a loss
of yield. In Table 8, the worst case scenario with the proposed
PDR ranges is not acceptable. As a result of such modelling,
the thermal control of the manufacturing plant was improved
to bring the temperature control within(1 °C. The cost of
implementing this improved engineering control (ca. £10K)
could be justified in light of these results. The model allows
informed decisions to be made.

Figure 10. Contour maps.
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Step 16: Scale Up the Procedure
Where possible, carry out an experimental design study

on an appropriate scale, using appropriate technology. In
reality at the preliminary stages of exploration, amounts of
starting material are very limited; therefore, carry out the
initial designs easily and quickly on a small scale in the
laboratory. Any options identified from the models should
be verified as early as possible on a larger scale using
jacketed vessels, reaction calorimeters, or small plant reac-
tors. Ultimately, this will then provide a basis for industrial-
scale production levels. Anticipate processes that may be
scale-dependent due to bulk-transfer and heat-transfer effects.
These include crystallisation, exothermic, and phase-transfer
reactions. In these cases, it may be more appropriate to use
small-scale experimentation as a guide to identifying the
important factors and work on a larger scale to obtain the
more predictive model.

Case Study
Outcome from Step 16.Fortuitously, the features of the

desilylation reaction were compatible with the limited
technical capabilities of the Gilson 231XL autosampler and
Peltier rack. The reaction was homogeneous and hence need
not be stirred. The reaction was carried out at near ambient
temperatures and was not exothermic so it did not require
condensing. It was not air- or moisture-sensitive, so an inert
atmosphere was not critical. A set of the preferred conditions
was first validated in traditional glassware in the laboratory
and then subsequently on pilot plant. During the initial pilot-
plant run, an aliquot was removed from the reaction vessel
and placed in the Peltier block. The block containing this
unstirred aliquot was set at the same temperature as that of
the stirred, nitrogen-blanketed reaction in the 400-L vessel.
After 26 h a second aliquot was removed from the reaction
vessel, and both aliquots indicated the reaction had proceeded
to the same degree of completion. Hence, for this reaction,

the initial assumptions that stirring and nitrogen blanketing
was not required for the reactions that were monitored
automatically (10 mL), were verified both on a larger scale
(500 mL) in the laboratory and in pilot plant (400 L).

After completing the manufacturing campaign, additional
process investigation was carried out in the laboratory to
further minimize waste in the isolation procedure. Perversely,
with the new procedure it was now the silyl ether impurity
that was difficult to remove, whereas the lactone impurity
level was no longer an issue. Hence, it was now more
important to drive the reaction on further before work-up.

It was possible to use the information derived from the
original model of the reaction with the new work-up
conditions, rather than having to start again from square one.
This was possible, since the experimental design case study
covered only the reaction conditions, rather than looking at
the combined reaction condition/work-up.

Conclusions
The benefits of applying experimental design in process

research are as follows:
(a) It produces powerful mathematical models of the

chemical process or procedure to allow opportunities or
constraints to be fully considered.

(b) Quality data allows better strategic decision making
and faster scale-up of optimised processes into plant.

(c) The models are obtained for a quantifiable amount of
resource.

(d) It is an efficient and effective method of choosing
which experiments to perform.

(e) The strategy is compatible with running automated
reactions in parallel.

(f) If circumstances change (e.g. the price of reagent
increases dramatically or work-up alters), the model can be
interrogated in different ways to take account of the new
criteria.

(g) It can be used as a framework to capture and share
information between project teams.

Outcome from Steps 1-16. The case study shows that
reactions are often more complex than intuition would
suggest. Woolly statements can be quantified, and the effect
of several (often-conflicting) responses can be visualised.

This highly predictive model of reaction was generated
in 6 days using readily accessible technology to monitor the
reactions automatically. The reaction, which was originally
carried out at “ambient” temperature, is actually very
sensitive to variation in temperature, and it is the control of
this factor that is most critical.

Implication for Automated Approach to Process
Investigation

Noise due to unassignable causes can be minimized by
keeping all other factors outside the design as constant as
possible and changes in the environment should be mini-
mized where possible. The use of automated and semi-
automated processing and measurement systems provides
extra confidence that this is the case, and is therefore
encouraged.

Figure 11. Permissible working area.
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Automation is not critical to experimental designsit just
makes it easier to obtain better control and more efficient to
implement.8 This proof of concept study showed that it was
possible to carry out reactions in a “reaction station” located
within the working envelope of an autosampler. Although
adequate for this study, the Gilson 231XL and the Peltier
rack had severe limitations in the range of other chemistry
it was possible to perform. In addition, the ability to look at
only one temperature per run became the rate-limiting step.

There already existed precedent for multizoned9 or
individual10 thermal control using either resistive heating or
Peltier control. The study also showed that having relieved

the bottleneck of analysing the samples, the labour-intensive
task became the reaction preparation and data-manipulation.

For all of these reasons, this case study led us to develop
the development automated reaction toolkit (DART)11 and
process research optimisation screening parallel experimenta-
tion robot (PROSPER)12 systems at GlaxoWellcome, which
are specifically designed to accelerate process optimisation
using automation and experimental design.

The DART system is based on the Gilson 233XL
autosampler, (which has a larger workspace envelope than
the Gilson 231XL) and custom-built reaction stations.

The DART allows automated reaction preparation, has
better process control (range of temperature, concurrent
reactions in different temperature zones, condensing, stirring,
and nitrogen blanketing) and on-line HPLC monitoring. A
refinement of this system is available commercially as the
Anachem SK233 Workstation.13

PROSPER offers even greater control and flexibility,
higher throughput and sophisticated software features to
improve the quality of the acquired data.
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Table 7: Comparison of predicted and actual yields for six different conditions

product yielda impurity yielda

target/constraints
conditions suggested

by the model predicted actual predicted actual

maximize product yielda
no limit on lactone.

temperature 19°C
time 31 h
solvent 3.6 vol
Et3N‚3HF 1.42 equiv

95.3 95.8 3.3 3.3

maximize product yield
limit on lactone< 2%

temperature 17°C
time 31 h
solvent 4.8 vol
Et3N‚3HF 1.50 equiv

94.2 94.0 1.9 1.7

maximize product yield
limit on lactone< 1.1%

temperature 16°C
time 29 h
solvent 5.3 vol
Et3N‚3HF 1.68 equiv

92.4 93.1 1.1 1.1

maximize product yield
limit on lactone< 2%
solvent<3.5 vol

temperature 14°C
time 31 h
solvent 3.45 vols.
Et3N‚3HF 1.58 equiv

93.9 94.2 1.8 2.0

maximize product yield
limit on lactone< 2%
Et3N.3HF< 1.18 equiv

temperature 28°C
time 19.5 h
solvent 7 vol
Et3N‚3HF 1.17 equiv

93.7 93.4 1.9 2.0

maximize product yield
limit on lactone< 2%
time <23 h

temperature 24°C
time 23 h
solvent 6.3 vol
Et3N‚3HF 1.41 equiv

94.2 94.2 2.0 1.9

a Yield in this table refers to unisolated yield % area/area by HPLC.

Table 8: Predicted deviation ranges

actual

temp
°C

time
h

NMP
vol

TREAT.HF
equiv

alcohol
% area

lactone
% area

factory setting 20 26 4.7 1.34 93.75 1.9
process deviation

range
( 2 ( 1 ( 0.1 ( 0.08

worst case scenario derived from the model

predicted

lowest yield
outcome

18 25 4.8 1.26 90.4 1.2

highest impurity
outcome

22 27 4.6 1.42 95.1 2.9
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Appendix 1
Terminology.
ANOVA: analysis of variance is a statistical technique

which subdivides the total variation of a set of data into
component parts associated with the specified sources of
variation.

Blocking: a technique used to reduce the noise and
improve sensitivity to effects. It is used when there is a
known factor that may influence the experimental result, but
the effect itself is of no interest. A typical example would
be if there is not enough material from one batch to complete
the experimental design and therefore two batches of raw
material have to be used.

Central composite design:type of experimental design
used for optimisation, which allows a mathematical model
of the process to be defined.

Centre points or controls: replicated centre points or
controls are run at the points in the centre of each factor.
The replicated centre points provide an estimate of back-
ground variability.

Continuous and discrete factors:factors can be quan-
titative or qualitative. Quantitative factors are those which
can take numerical values on a continuous scale (temperature,
time). Qualitative factors are usually assigned names and are
discrete in nature (e.g., solvent, chemist, and site).

Duplication: occurs when several measurements are made
on the same experimental run. Duplication is not the same
as replication. Duplication gives information only on mea-
surement error or product uniformity. Duplication almost
always underestimates experimental error. Repeated sampling
from the same reaction while considering time as a factor
will also underestimate the experimental error.

Experimental design: a set of systematically designed
experimental runs.

Experimental error: there are three main categories of
experimental error:

(a) background variability or noise due to unassignable
causes, quantify through replication.

(b) bias or systematic error due to assignable causes,
minimize through blocking and randomisation.

(c) blunders due to mistakes in experimental practice,
avoid through careful experiment practice and well-defined
worksheets for experimental design.

If only one measurement for each experimental run is
used, there is no direct estimate of the background variability.
One approach to the analysis of such a design is to assume
that certain high-order interactions are negligible and com-
bine them to estimate the background variability.

Experimental run: an experiment with a specified
combination of levels for each factor.

Factors: these are the controllable parameters used as
inputs to the products and processes under evaluation. As
they are varied, they may be expected to change the output
of the response variable. Also referred to as: treatments,
independent variables, predictors, x variables, and input
variables. Examples of factors are: temperature, time, rate
of addition, amount of reagent or solvent in a chemical
reaction.

Factor effect: the change in response caused by varying
the level of the factor.

Factor range: the difference between the highest and
lowest levels for a given factor.

Fractional factorial: type of design used for screening
a large number of factors.

Interaction: the measured change in response as a result
of the combined effect of two or more factors. A two-factor
interaction indicates how the effect of one factor changes as
the level of the second factor is varied. This is typical of the
relationship between temperature and time, for example if
the reaction is run at a high temperature, then a shorter time
is generally required and vice versa. Higher-order interac-
tions, involving three or more factors, are also possible in
which the effect of one factor depends on the levels of two
or more factors. Fortunately these are less common in real
life.

Lack of fit: measures the ability of the model to
adequately predict the response within the design space. Note
that the overall fit of the model may be good, but the lack
of fit will detect specific regions of the design space where
the model begins to break down. That is, the model may fit
the design points, but will not be a very good predictor at
other points.

Levels: the particular values or settings of a factor. For
example, a temperature may be set at either 10 or 30°C and
the solvent may be acetone or methanol.

Method development:For a process chemist this refers
to the investigation of the conditions required to bring about
a particular transformation or isolation. Usually the study
will be confined to one particular substrate. For the medicinal
chemist, robust method development refers to the general
applicability of reaction conditions for a wide range of
substrates.

Model: All factors are varied simultaneously over a set
of planned experiments and the results are then connected
by means of a mathematical model (usually a polynomial
regression model). This model is then used for interpretation,
predictions and optimisation.

Optimisation of a process is more than simply obtaining
the “best yield”. There are many tradeoffs between other
responses (such as quality) that need to be considered, and
it is important to define and reevaluate the criteria for each
study. For example, it is critical to control impurities to
required specification levels. Economic and environmental
benefits are also important. The throughput should be
maximized by reducing reaction time or increasing concen-
tration. Minimizing the input of starting materials, reagents,
or solvents can reduce the material costs and waste disposal.
Working at temperatures closer to ambient can reduce energy
costs.

Parameter: See factor.
Pilot study: A small experimental set performed before

embarking on the chosen design to check that the extreme
combinations of factor levels will work or to determine the
repeatability of the system. Also referred to as sizing or
scoping experiments.
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Process deviation ranges (PDRs):It is usual to define
factor settings, with process deviation ranges (PDRs), within
which the plant operator should work to ensure that the
process and product are robust to minor variation of the
manufacturing parameters.

Randomisation is an experimental technique that can be
used to remove the effect of potential bias errors. There is
always a risk that the experimental result may be influenced
by nonrandom, often time-dependent errors. Such risks may
be counteracted by randomisation. This means that in any
situation where the experimenter has a choice as to the order
he/she should do things, then a random choice should be
made. For example, the order of executing the experimental
runs should be randomised; the order of analysing samples
drawn from the reaction should be randomised if several
samples are analysed on the same occasion. Running the
experiment in random order makes the interpretation of factor
effects more straightforward.

Reaction space:an imaginary area bounded by the
extremes of the tested factors.

Replicate is the complete repetition of an experimental
run. Any differences between replicates are not a result of
changes in the factors but are simply a reflection of
background variability. Changes in the responses, as the
factor levels are changed, can then be compared to this
background variability.

Response surface designs:designs such as central
composite, which allow models to be fitted which capture
curvilinear relationships between factors and responses.

Responses:These are the outcomes of interest. Also
referred to as output variables, dependent variables,y
variables. Examples of responses are: the yield and level of
impurities from a chemical reaction.

Robustness:The target for the Development chemist is
to obtain a controlled process and consistent product quality.

Robustness designs:typically fractional factorial designs
used to determine process deviation ranges.

Run order: the actual order in which the reactions were
performed. This should preferably be in a random sequence.

Screening: the process of identifying the selection of
“ingredients” (such as reagent and solvent) and the factors
which have most impact on the process (i.e., to select the
important few from the trivial many)

Screening designs:a group of experiments which identi-
fies the relative impact each of the factors has on the process.

Standard order: a conventional ordering of the array of
low- and high-factor levels versus runs.

Statistical significance (p-value): the probability that an
effect at least as large as that observed would be obtained
purely by chance if there were really no difference.

Appendix 2
Comments on the Statistical Analysis.Design-Expert

5(DX-5) provides a detailed glossary of the terms used in
this section.

Fit a model with all linear, interaction, and quadratic terms
by multiple linear regression. For four factors, this model
will contain 15 parameters: 1 for the overall mean (intercept),

4 for the linear terms (A, B, C, D), 6 for the interaction terms
(AB, AC, AD, BC, BD, CD), and 4 for the quadratic terms
(A2, B2, C2, D2). This leaves 15 degrees of freedom for error.

The “Sequential model sum of squares” summary (Table
9) shows how terms of increasing complexity contribute to
the model’s predictive power. Using the column headed
prob. > F select the highest-order polynomial where the
additional terms are significant, in this case the quadratic
model.

The target is to obtain a model with “insignificant lack
of fit”. The “Lack of fit” data (Table 10) compares the model
residual error to the pure error from replicated design points.
In this example, the replicated design points are the six centre
points. If higher order model terms are needed to adequately
explain the response surface, then the lack of fit p-value will
be less than 0.05. In this example, the linear model is poor
because it shows significant lack-of-fit (prob.> F is 0.0002),
whereas the quadratic model is good because it shows
insignificant lack of fit (prob.> F is 0.6089).

The “Model summary data” (Table 11) is useful in
comparing different models. Focus on the model minimizing
the “PRESS”, or equivalently maximizing the “PRED
R-SQR”.

In this case, there is little discrepancy between the adjusted
R2 and the predictedR2, which indicates the model does not
need to be refined.

The value,R2 in the ANOVA (Table 12) shows that the
full quadratic model explains 99.5% of the variation in the
data. This value represents the percent of variation in the
data that can beexplained by the fitted model. As an
estimator, it usually overestimates how well the model fits
the data because there is no penalty for adding additional
terms to the model that make it more complex. The overall
model fit is significant as evidenced by ap-value of<0.0001.

Table 9: Sequential model sum of squares

source
sum of
squares

degrees
of freedom

mean
square F value prob> F

mean 245952 1 245952
linear 531.191 4 132.798 15.9808< 0.0001
quadratic 204.782 10 20.4782 103.654< 0.0001
cubic 1.68635 8 0.210794 1.1554 0.4309
residual 1.2771 7 0.182443
total 246691 30 8223.03

Table 10: Lack of fit

source
sum of
squares

degrees of
freedom

mean
square F value prob> F

linear 206.657 20 10.3328 47.4331 0.0002
quadratic 1.87425 10 0.187425 0.860379 0.6089
cubic 0.1879 2 0.09395 0.43128 0.6717
pure error 1.0892 5 0.21784

Table 11: Model summary statistics

source root MSE R2 adjustedR2 predictedR2 PRESS

linear 2.88268 0.718858 0.673876 0.58693 305.233
quadratic 0.444481 0.99599 0.992247 0.983268 12.3641
cubic 0.427133 0.998272 0.99284 0.96126 28.626
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Therefore, the response surface can be adequately modelled
by the quadratic function selected.

Use the “Table of coefficients” for the full model (Table
13) to see whether the coefficient is that size by chance alone.
When a coefficient has ap-value larger than 0.10, it is not
significantly contributing to the model’s predictive power.
Some practitioners prefer to modify the model, if necessary,
to improve prediction by pooling nonsignificant model terms
into error. In this case study no terms have been removed in

any of the three response models, because the six centre
points contribute sufficient degrees of freedom.

Finally, use the “Diagnostics case statistics” (Table 14)
based on the full quadratic model to assess the final model.
Normal probability plots of the residuals are useful in
examining the model and its assumptions. A studentised
residual is the sample residual divided by the square root of
its estimated variance. If the studentised residuals were the
result of random noise (roughly normal), then they should

Table 12: ANOVA for response surface quadratic model

source sum of squares degrees of freedom mean square F Value prob> F

model 735.973 14 52.5695 266.089 < 0.0001
residual 2.96345 15 0.197563
lack of fit 1.87425 10 0.187425 0.860379 0.6089
pure error 1.0892 5 0.21784
cor total 738.937 29

root MSE dep mean C.V. PRESS R2 adjustedR2 predR2 adeq precision

0.444481 90.545 0.490895 12.3641 0.99599 0.992247 0.983268 58.8459
desire> 4

Table 13: Table of coefficients

factor coefficient estimate DF standard error t for H0 coeff ) 0 prob> |t| VIF

intercept 93.07 1 0.181459
A - temperature 4.15917 1 0.090729 45.8415 <0.0001 1
B - reaction time 1.25833 1 0.090729 13.8691 <0.0001 1
C - NMP -1.08833 1 0.090729 -11.9954 <0.0001 1
D - TREAT.HF 1.4375 1 0.090729 15.8438 <0.0001 1
A2 -2.11938 1 0.08487 -24.9722 <0.0001 1.05
B2 -0.20438 1 0.08487 -2.40811 0.0294 1.05
C2 -0.24438 1 0.08487 -2.87942 0.0115 1.05
D2 -0.58813 1 0.08487 -6.92976 <0.0001 1.05
AB -1.17875 1 0.11112 -10.6079 <0.0001 1
AC 1.17875 1 0.11112 10.6079 <0.0001 1
AD -1.38625 1 0.11112 -12.4752 <0.0001 1
BC 0.22 1 0.11112 1.97984 0.0664 1
BD -0.3225 1 0.11112 -2.90226 0.0109 1
CD 0.245 1 0.11112 2.20482 0.0435 1

Figure 12. Normal probability plot. Figure 13. Outlier T plotted against run number.
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plot along a straight line. When data falls far off this line,
the model should be examined. In Figure 12 the points on

this plot lie fairly close to the straight line so the model seems
appropriate.

Table 14: Diagnostics case statistics

standard
order

actual
value

predicted
value residual leverage

student
residual

Cook’s
distance outliert

run
order

1 82.93 82.90 0.026667 0.583 0.092944 0.000806 0.089818 4
2 94.04 93.99 0.045833 0.583 0.159747 0.002382 0.154462 14
3 88.07 87.98 0.0875 0.583 0.304972 0.008681 0.295549 8
4 93.97 94.36 -0.38833 0.583 -1.3535 0.170982 -1.3956 18
5 77.21 77.44 -0.22917 0.583 -0.79874 0.059545 -0.78861 3
6 92.99 93.24 -0.255 0.583 -0.88878 0.073726 -0.88218 13
7 83.6 83.40 0.201667 0.583 0.702889 0.046112 0.690522 7
8 94.38 94.49 -0.10917 0.583 -0.38049 0.013512 -0.36937 17
9 88.68 88.71 -0.02583 0.583 -0.09004 0.000757 -0.08701 2

10 94.3 94.25 0.048333 0.583 0.168461 0.002649 0.162903 12
11 93 92.49 0.505 0.583 1.76013 0.289151 1.90897 6
12 93.42 93.33 0.094167 0.583 0.328208 0.010054 0.318224 16
13 84.86 84.22 0.638333 0.583 2.22485 0.461994 2.62591 1
14 94.26 94.48 -0.2225 0.583 -0.7755 0.056131 -0.76469 15
15 88.71 88.89 -0.18083 0.583 -0.63028 0.037077 -0.61713 5
16 94.66 94.44 0.223333 0.583 0.778406 0.056552 0.767676 19
17 75.82 76.27 -0.45417 0.583 -1.58295 0.233869 -1.67562 20
18 93.25 92.91 0.339167 0.583 1.18213 0.130427 1.19928 30
19 89.78 89.73 0.044167 0.583 0.153938 0.002212 0.148836 9
20 94.61 94.77 -0.15917 0.583 -0.55476 0.028724 -0.54153 11
21 94.13 94.27 -0.13917 0.583 -0.48505 0.021959 -0.47232 26
22 89.94 89.92 0.024167 0.583 0.084231 0.000662 0.081394 24
23 88.21 87.84 0.3675 0.583 1.28088 0.153129 1.31124 22
24 93.11 93.59 -0.4825 0.583 -1.6817 0.263959 -1.80358 28
25 93.32 93.07 0.25 0.167 0.616137 0.005062 0.602924 10
26 92.32 93.07 -0.75 0.167 -1.84841 0.045555 -2.0321 21
27 93.68 93.07 0.61 0.167 1.50337 0.030135 1.57597 23
28 93.27 93.07 0.2 0.167 0.49291 0.003239 0.4801 25
29 92.87 93.07 -0.2 0.167 -0.49291 0.003239 -0.4801 27
30 92.96 93.07 -0.11 0.167 -0.2711 0.00098 -0.26255 29

Table 15: Confidence intervals

conditions suggested
by the model response prediction SE mean SE Pred 95% PI low 95% PI high

temperature 19°C alcohol 95.30 0.51 0.68 93.85 96.75
time 31 h silyl ether 0.17 0.59 0.78 -1.50 1.84
solvent 3.6 vol lactone 3.27 0.11 0.15 2.96 3.59
Et3N‚3HF 1.42 equiv

temperature 17°C alcohol 94.19 0.45 0.63 92.84 95.54
time 31 h silyl ether 2.90 0.52 0.73 1.34 4.46
solvent 4.8 vol lactone 1.87 0.10 0.14 1.57 2.16
Et3N.3HF 1.50 equiv

temperature 16°C alcohol 92.43 0.55 0.71 90.92 93.94
time 29 h silyl ether 5.47 0.64 0.82 3.73 7.21
solvent 5.3 vol lactone 1.12 0.12 0.15 0.79 1.45
Et3N‚3HF 1.68 equiv

temperature 14°C alcohol 93.94 0.82 0.93 91.96 95.93
time 31 h silyl ether 3.07 0.94 1.07 0.78 5.36
solvent 3.45 vol lactone 1.83 0.18 0.20 1.40 2.26
Et3N‚3HF 1.58 equiv

temperature 28°C alcohol 93.71 0.89 1.00 91.58 95.83
time 19.5 h silyl ether 2.78 1.03 1.15 0.33 5.24
solvent 7 vol lactone 1.94 0.19 0.22 1.47 2.40
Et3N‚3HF 1.17 equiv

temperature 24°C alcohol 94.22 0.27 0.52 93.11 95.32
time 23 h silyl ether 2.58 0.31 0.60 1.30 3.86
solvent 6.3 vol lactone 1.96 0.06 0.11 1.72 2.20
Et3N‚3HF 1.41 equiv
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Another diagnostic tool is the outliert values plotted
against the run number of the experiment. The outliert value
is the sample residual divided by the square root of its
estimated variance; in this case, the estimated variance for
the current residual is calculated based on all the other
residuals, excluding the current one. A horizontal band of
points symmetric about zero suggests the residuals are
random with constant variance and a mean of zero. This is
an underlying assumption of linear regression. Values larger
in absolute value than 3.50 suggest that the model is not
predicting the data well.

Figure 13 shows that these points are symmetric about
zero within a band of(2.6. There is no pattern here that
suggests the model needs to be changed.

For this case study, the terms in the final model are
important in explaining the data. No higher order terms are
needed in the model. The curvature in the response surface

can be adequately modelled by the quadratic terms. Cubic
terms are not necessary. These steps verified that the final
model has met the critical assumptions.

Table 15 shows the standard error and confidence intervals
associated with each of the predictions. A confidence interval
helps quantify the variability of the predicted response for a
particular combination of factor settings. The variability of
the predicted response is in direct relationship to the width
of the confidence level. The wider the interval, the more
variability there will be at that particular setting. The standard
error and confidence levels in the prediction are greatest for
the penultimate set of conditions and lowest for the last set
of conditions
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